Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Open Forum Infect Dis ; 8(11): ofab506, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2269553

RESUMEN

Background: During the coronavirus disease 2019 (COVID-19) pandemic, clinical trials necessitated rapid testing to be performed remotely. Dried blood spot (DBS) techniques have enabled remote HIV virologic testing globally, and more recently, antibody testing as well. We evaluated DBS testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody testing in outpatients to assess seropositivity. Methods: In 2020, we conducted 3 internet-based randomized clinical trials and offered serologic testing via self-collected DBS as a voluntary substudy. COVID-19 diagnosis was based on the Centers for Disease Control and Prevention case definition with epidemiological link to cases. A minority reported polymerase chain reaction (PCR) testing at an outside facility. We tested for anti-SARS-CoV-2 immunoglobulin via antibody detection by agglutination-PCR (ADAP) and compared the results with enzyme-linked immunosorbent assay (ELISA). Results: Of 2727 participants in the primary studies, 60% (1648/2727) consented for serology testing; 56% (931/1648) returned a usable DBS sample. Of those who were asymptomatic, 5% (33/707) had positive ADAP serology. Of participants with a positive PCR, 67% (36/54) had positive SARS-CoV-2 antibodies. None of those who were PCR-positive and asymptomatic were seropositive (0/7). Of 77 specimens tested for concordance via ELISA, 83% (64/77) were concordant. The challenges of completing a remote testing program during a pandemic included sourcing and assembling collection kits, delivery and return of the kits, and troubleshooting testing. Self-collection was successful for >95% of participants. Delays in US mail with possible sample degradation and timing of DBS collection complicated the analysis. Conclusions: We found remote antibody testing during a global pandemic feasible although challenging. We identified an association between symptomatic COVID-19 and positive antibody results at a similar prevalence as other outpatient cohorts.

2.
Case Rep Transplant ; 2022: 9426175, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2112962

RESUMEN

Background: Since October 2021, there have been more than 500 cases of severe hepatitis of unknown origin in children reported worldwide, including 180 cases in the U.S. The most frequently detected potential pathogen to date has been adenovirus, typically serotype 41. Adenovirus is known to cause a self-limited infection in the immunocompetent host. However, in immunosuppressed individuals, severe or disseminated infections may occur. Method: We present the case of a two-year-old female who presented with cholestatic hepatitis and acute liver failure (ALF). Work up for etiologies of ALF was significant for adenovirus viremia, but liver biopsy was consistently negative for the virus. The risk for severe adenoviral infection in the setting of anticipated immunosuppression prompted us to initiate cidofovir to decrease viral load prior to undergoing liver transplantation. Result: Our patient received a successful liver transplant, cleared the viremia after 5 doses of cidofovir, and continues to maintain allograft function without signs of infection at the time of this report, 5 months posttransplant. Conclusion: Recent reports of pediatric hepatitis cases may be associated with adenoviral infection although the exact relationship is unclear. There is the possibility of the ongoing SARS-CoV-2 environment, or other immunologic modifying factors. All patients presenting with hepatitis or acute liver failure should be screened for adenovirus and reported to state health departments. Cidofovir may be used to decrease viral load prior to liver transplantation, to decrease risk of severe adenoviral infection.

3.
Science ; 374(6571): 1127-1133, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1723460

RESUMEN

Humans differ in their susceptibility to infectious disease, partly owing to variation in the immune response after infection. We used single-cell RNA sequencing to quantify variation in the response to influenza infection in peripheral blood mononuclear cells from European- and African-ancestry males. Genetic ancestry effects are common but highly cell type specific. Higher levels of European ancestry are associated with increased type I interferon pathway activity in early infection, which predicts reduced viral titers at later time points. Substantial population-associated variation is explained by cis-expression quantitative trait loci that are differentiated by genetic ancestry. Furthermore, genetic ancestry­associated genes are enriched among genes correlated with COVID-19 disease severity, suggesting that the early immune response contributes to ancestry-associated differences for multiple viral infection outcomes.


Asunto(s)
Negro o Afroamericano/genética , COVID-19/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Leucocitos Mononucleares/virología , Población Blanca/genética , Adulto , Anciano , COVID-19/inmunología , COVID-19/fisiopatología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Variación Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Transcripción Genética , Carga Viral , Adulto Joven
4.
bioRxiv ; 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: covidwho-900763

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA